寒江文学天涯何处是归途

首页 > 职场 / 正文

八年级上册数学书一次函数知识点

2024-09-22 05:27:00 职场
文章八年级上册数学书一次函数知识点由网友深情张扬投稿,希望给你工作学习带来帮助,当然本站还有更多八年级上册数学书一次函数知识点相关模板与范例供你参考借鉴。

八年级上册数学书一次函数知识点

  在平时的学习中,说到知识点,大家是不是都习惯性的重视?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点有助于大家更好的学习。下面是小编为大家整理的八年级上册数学书一次函数知识点,希望能够帮助到大家。

  八年级上册数学书一次函数知识点1

  一般地,形如y=kx+b(k、b是常数,k≠0)函数,叫做一次函数。当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数。

  一次函数的图象及性质

  一次函数y=kx+b的图象是经过(0,b)和(—b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;当b<0时,向下平移)

  (1)解析式:y=kx+b(k、b是常数,k≠0)

  (2)必过点:(0,b)和(—b/k,0)

  (3)走向:k>0,图象经过第一、三象限;

  k<0,图象经过第二、四象限

  b>0,图象经过第一、二象限;

  b<0,图象经过第三、四象限

  k>0,b>0;<=>直线经过第一、二、三象限

  k>0,b<0;<=>直线经过第一、三、四象限

  K<0,b>0;<=>直线经过第一、二、四象限

  K<0,b<0;<=>直线经过第二、三、四象限

  (4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小。

  (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。

  (6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;

  当b<0时,将直线y=kx的图象向下平移b个单位。

  直线y=k1x+b1与y=k2x+b2的位置关系

  (1)两直线平行:k1=k2且b1≠b2

  (2)两直线相交:k1≠k2

  (3)两直线重合:k1=k2且b1=b2

  确定一次函数解析式的方法

  (1)根据已知条件写出含有待定系数的函数解析式;

  (2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;

  (3)解方程得出未知系数的值;

  (4)将求出的待定系数代回所求的函数解析式中得出结果。

  函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题。建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题。

  正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线。这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义。从图象中获取的信息一般是:

  (1)从函数图象的形状判定函数的类型;

  (2)从横、纵轴的实际意义理解图象上点的坐标的实际意义。解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数。

  用函数观点看方程(组)与不等式

  一元一次方程与一次函数的关系

  任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值。

  一次函数与一元一次不等式的关系

  任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围。

  一次函数与二元一次方程组

  (1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=—(a/b)x++c/b的图象相同。

  (2)二元一次方程组

  a1x+b1y=c1,a2x+b2y=c2;的解可以看作是两个一次函数y=(a1/b1)x+c1/b1和y=—(a2/b2)x+c2/b2的图像交点。

  八年级上册数学书一次函数知识点3

  一、常量、变量:

  在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;

  二、函数的概念:

  函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.

  三、函数中自变量取值范围的求法:

  (1).用整式表示的函数,自变量的取值范围是全体实数。

  (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

  (3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

  (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

  (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

  四、 函数图象的定义:

  一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

  五、函数值:

  函数值是指自变量在数值范围内取某个值时,因变量与之对应的确定的值

  例如:在正方形的面积公式S=a2中,若a=2;则S=4;若a=3,则S=9,这说明4是当a=2时的函数值,9是当a=3时的函数值

  六、函数有三种表示形式:

  (1)列表法 (2)图像法 (3)解析式法

  七、正比例函数与一次函数的概念:

  一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

  一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.

  当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.

  八、正比例函数的图象与性质:

  (1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

  (2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。

  九、一次函数与正比例函数的图象与性质

  一次函数概念

  如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数.

  图 像

  一条直线

  性 质

  k>0时,y随x的增大(或减小)而增大(或减小);

  k<0时,y随x的增大(或减小)而减小(或增大).

  直线y=kx+b(k≠0)的位置与k、b符号之间的关系.

  (1)k>0,b>0; (2)k>0,b<0;

  (3)k>0,b=0 (4)k<0,b>0;

  (5)k<0,b<0 (6)k<0,b=0

  一次函数表达式的确定

  求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.

  5.一次函数与二元一次方程组:

  解方程组

  从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值,一次函数知识要点

  解方程组

  从“形”的角度看,确定两直线交点的坐标.

  十、求函数解析式的方法:

  待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

  1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.

  2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标

  3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.

  4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围

  八年级上册数学书一次函数知识点4

  一次函数

  我们称数值变化的量为变量(variable)。

  有些量的数值是始终不变的,我们称它们为常量(constant)。

  在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function)。

  如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

  形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

  形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

  同学们对上面一次函数知识点的总结内容学习,相信同学们已经能很好的掌握了吧,加油吧。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的'坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

由小编深情张扬整理的文章八年级上册数学书一次函数知识点分享结束了,希望给你学习生活工作带来帮助。

Tags:知识点   函数   数学   八年级上册  

搜索
网站分类